Collaboration and analytics for optimal production and forecasting

Tom Fox, <u>dynamicforecaster.com</u> 29-Sep-2015, Aberdeen Digital Energy Journal Forum on Using analytics to improve production

Summary

- To maximise production we need to integrate different areas of technical expertise. We need to involve all levels in the organisation, asset equity partners and customers too.
- Integrated activity planning, rolling production forecasting and asset management must be aligned.
 For credible production forecasting, we have to reach a balanced view of uncertainties.
- How can we enable such collaboration across organisations and locations?
- Integrated Operations Centres are not the whole answer. People, Process, Technology and Organisation all need yet more attention to deliver improved workflows.
- A case-study of optimising gas-lift for many wells will show the benefits of collaboration for understanding the reservoir, production and facilities all brought together with insights from Operations.

From analytics to forecasts

Understanding the past, using analytics,

helps to forecast future production

When we have analytics,

- Who understands them?
- How will we use them?

It's a bad time to be poor at planning and forecasting

Challenges

- Low oil price
- High unit costs of mature offshore fields
- Aging platforms and pipelines infrastructure
 i.e. *commercial*, *production* and *maintenance* Opportunities

<u>Opportunities</u>

- Lucrative production enhancements
- Share infrastructure to reduce unit costs
- Extending field life defers cost of abandonment
 DynamicForecaster ©

Collaborative analytics & forecasting

From analytics to better forecasts

Challenges in planning and forecasting

Impact of problems

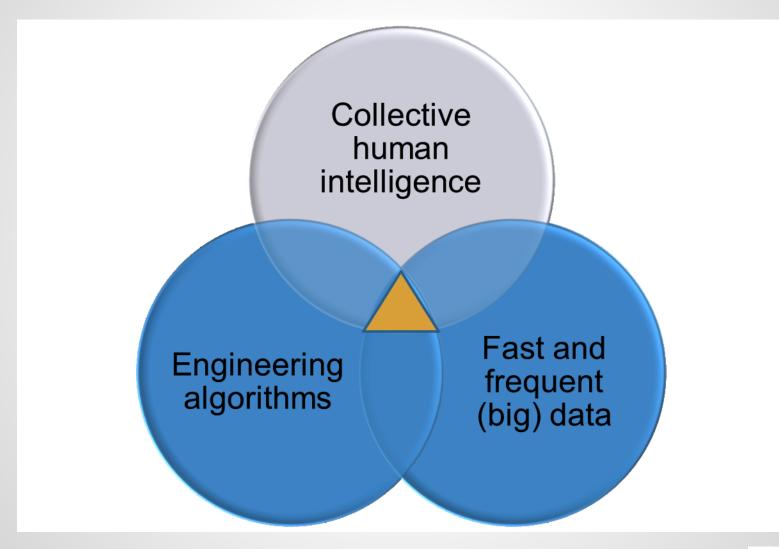
What is needed to improve forecasting?

Design of collaborative analytics & forecasting

Implementation examples

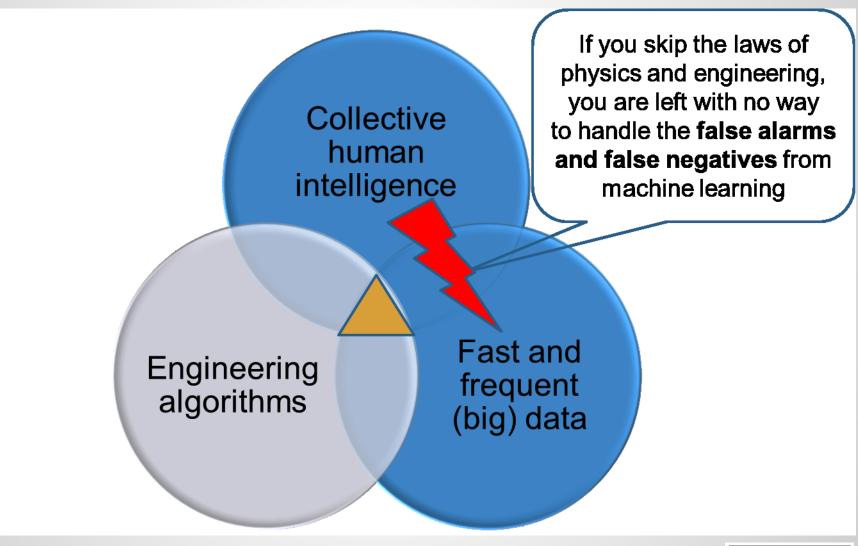
Forecasting depends on complex planning

Integrated Activity Planning


- Commercial cash flows
- Production flows
- Maintenance logistics

but ...

- Complex decisions are hard
- Implementation easily breaks down


A digital solution is an incomplete solution

Overloaded with misleading conclusions

DynamicForecaster ©

Collaborative analytics & forecasting

- From analytics to better forecasts
- Challenges in planning and forecasting
- **Impact of problems**
- What is needed to improve forecasting?
- Design of collaborative analytics & forecasting

Implementation examples

Quiz: Who can identify this ...

- ~10% of North Sea oil and gas production
- An offshore production platform; a system node
- Unusually operating in 'phase 1 mode'
- Maintenance Permit(s) to Work, e.g. PSV #504
- Hydrates in the gas compression system pipework, so stopped condensate pump B.
- Urgently started condensate pump A ...
- Disaster
- US\$1.4 billion insurance claims
- 167 lives lost in July 1988

We have not forgotten Piper A ...

Copyright image is accessible from the link below

http://www.bbc.co.uk/news/uk-scotland-22840445 https://enwikipediaorg/wiki/Piper Alpha

Missing integrated management

- ~10% of North Sea oil and gas production
- An offshore production platform; a system node
- Unusually operating in 'phase 1 mode'
- Maintenance Permit(s) to Work, e.g. PSV #504 maintenan
- Hydrates in the gas compression system pipework, so stop condensate pump B.
- Urgently started condensate pump A
- Disaster
- US\$1.4 billion insurance claims
- 167 lives lost in July 1988

DynamicForecaster

commercial

production

Psychological traps impair decisions

- Over-relying on first thoughts: the anchoring trap
- Keeping on keeping on: the status quo trap
- Protecting earlier choices: sunk-cost trap
- Seeing what you want to see: the confirming-evidence trap
- Posing the wrong question: the framing trap
- Being too sure of yourself: the over-confidence trap
- Focusing on dramatic events: the recall-ability trap
- Neglecting relevant information: the base-rate trap
- Slanting probabilities and estimates: the prudence trap
- Seeing patterns where none exist: the out-guessing randomness trap
- Going mystical about coincidences: the surprised-by-surprises trap

Ref. Hammond, Keeney, & Raiffa, (1999). Smart Choices

DynamicForecaster

Collaborative analytics & forecasting

- From analytics to better forecasts
- Challenges in planning and forecasting
- Impact of problems
- What is needed to improve forecasting?
- Design of collaborative analytics & forecasting
- Implementation examples

Collaboration is not a luxury

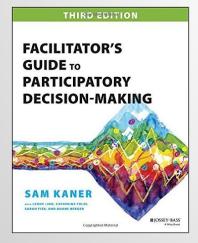
It deserves purposeful investment of your time, energy and money

Collaboration on analysis

- Software to provide shared access to analysis
 - inputs
 - tools
 - results
- Integration of analysis
 - Multi-discipline expertise
 - Multi-role (operators, analysts, management, partners, vendors, customers).
 - Multi-location
 - Concurrent more than sequential

Communications are not a luxury

Everyone makes decisions at all levels in your organisation.

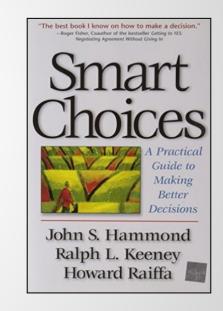

- Why not keep them informed?
- How can they participate in complex decisions?

Gradients of agreement

is a better vocabulary than 'Yes/No'

for team decision-making

Source: Community at Work Gradients of Agreement Scale, 1996


Team Decision Making Gradients of Agreement Enthusiastic Support Fully support - "I like it." Yes 2. Endorsement with minor concerns - "Basically I like it." Lukewarm Support 3. Agree with reservations - "I can live with it." Abstain - "I have no opinion." 5. Stand aside - "I don't like this, but I don't want to hold up the group." Meager Support 6. Disagreement, but willing to go with majority - "I want my disagreement noted, but I'll support the decision." 7. Disagreement, with request not to be involved in implementation - "I don't want to stop anyone else, but I don't want to be involved in implementing it." Strong Objection 8. Can't support the proposal

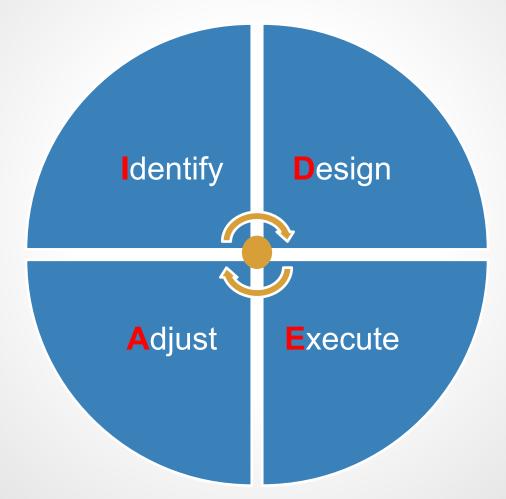
No

Smart choices: a practical guide to better decisions

ProACT

- Work on the right decision Problem
- Specify your Objectives
- Create imaginative Alternatives
- Understand the Consequences
- Grapple with your Trade-offs
- Clarify your uncertainties
- Think hard about your risk tolerance
- Consider linked decisions
- Be aware of psychological traps

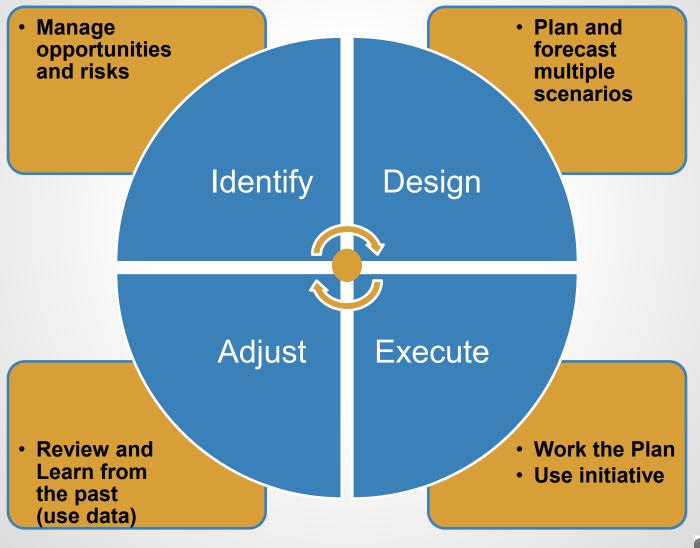
DynamicForecaster @


Collaborative analytics & forecasting

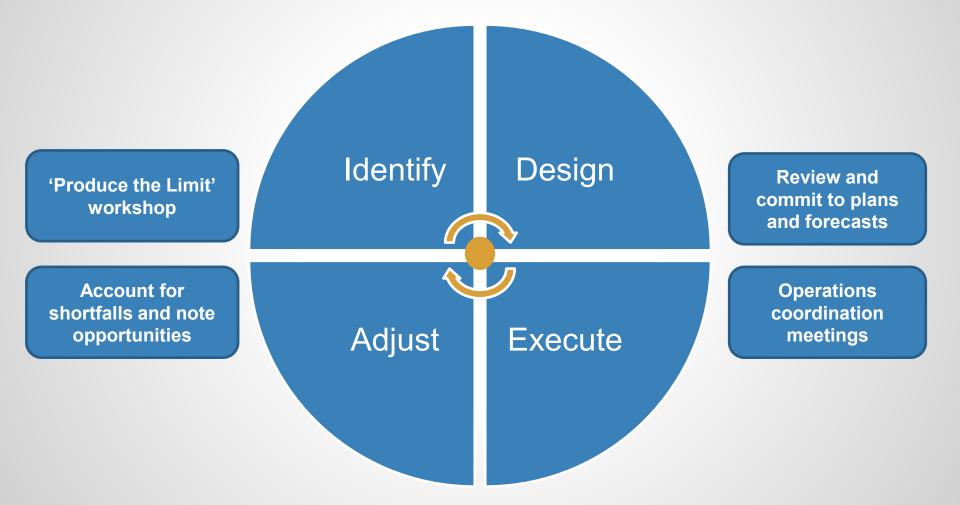
- From analytics to better forecasts
- Challenges in planning and forecasting
- Impact of problems
- What is needed to improve forecasting?
- **Collaborative analytics & forecasting**

Implementation examples

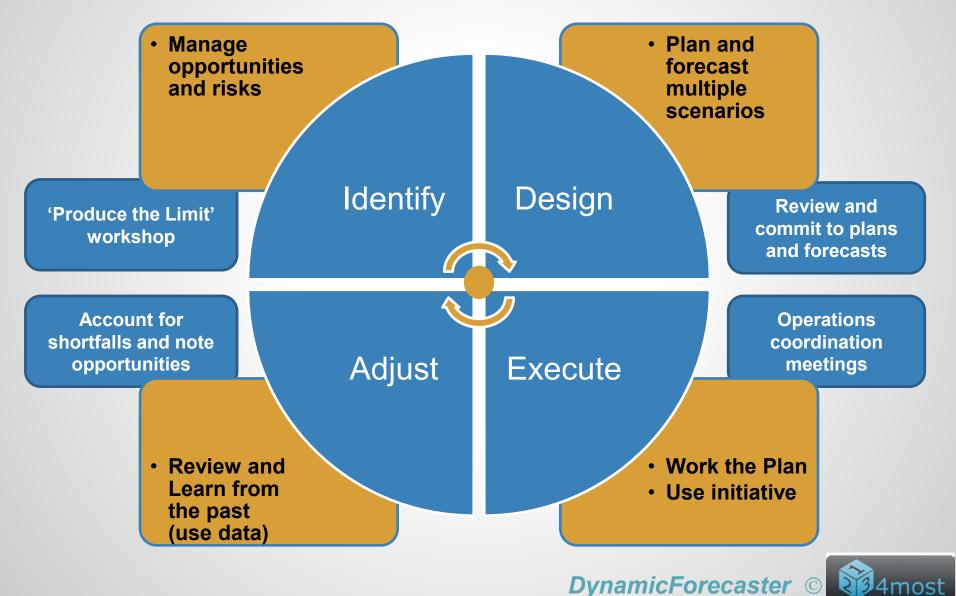
'IDEA' cycle of improvement

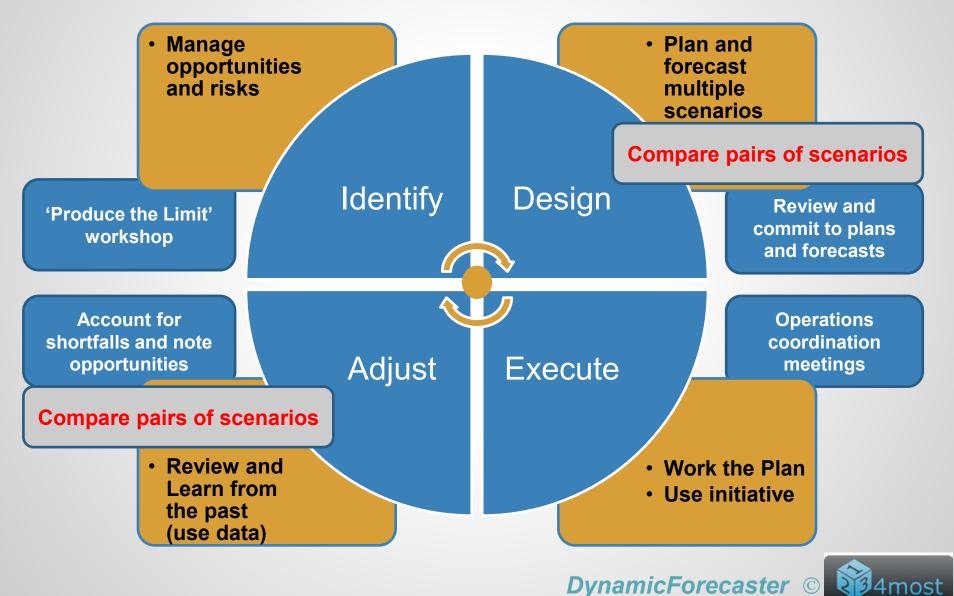


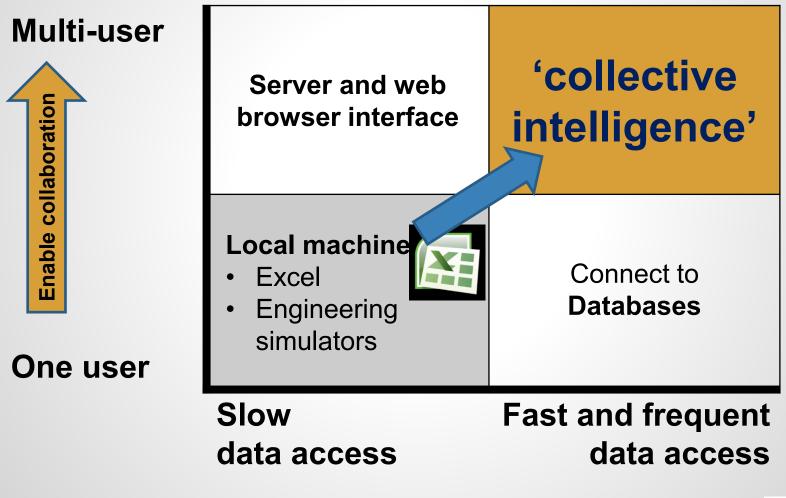
Ref. May (2007) The Elegant Solution: Toyota's Formula for Mastering Innovation


DynamicForecaster ©

Primary processes for forecasting


Collaborative events in planning cycle




Collaborative analytics & forecasting

Collaborative analytics & forecasting

Team access to analysis tools & data

Why move beyond spreadsheets?

- Error rate is unacceptable (refs.1,2)
- Hard to enforce version control
 - VBA coding is difficult to adapt
- Lack of security for multiple users
- Poor for rolling, repetitive updates

DvnamicForecaster

Risk of bad business decisions

1 2 3				-										• +	+		+	+		
	A B	C	D	E	F	G	Н			К		M	N	0	Y	AI	AJ	AT	BD	T
1	A 0	U U			1	G	11			ĸ		lvi	14	U		6	~	A	00	-
2		DateTime	TOTAL	Total_A	A_001	A_002	A_003	A_004	A_005	A_006	A_007	A_008	A_009	Total_B	Total_C	D_Total	E_Total	F_Total		
3		2013-01-01	216	45	1	2	. 3	4	5	6	7	8	9	27	54	90	45	45		
4		2013-01-02	216	45	1	2	. 3	4	5	6	7	8	9	27	54	90	45	45		
5		2013-01-03	216	45	1	2	3	4	5	6	7	8	9	27	54	90	45	45		
6		2013-01-04	216	45	1	2	3	4	5	6	7	8	9	27	54	90	45	45		
7		2013-01-05	216	45	1	2	3	4	5	6	7	8	9	27	54	90	45	45		
8		2013-01-06	216	45	1	2	3	4	5	6	7	8	9	27	54	90	45	45		
9		2013-01-07	252	45	1	2	. 3	4	5	6	7	8	9	27	54	126	45	81		-
14 A	I ◀ ▶ ▶ Flows / Events / summaryFlows / Sheet3 / 🞾 / 🛛 🛛 🗍 ◀																			
1	1. http://panko.shidler.hawaji.edu/SSR/Mypapers/whatknow.htm																			

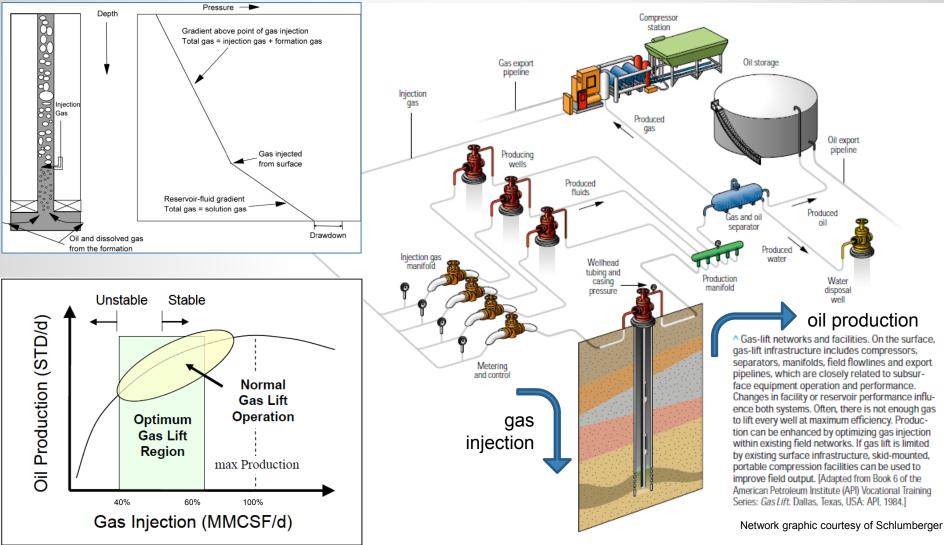
2. http://www.eusprig.org/horror-stories.htm

Implementation examples

DynamicForecaster, a multi-user, web-enabled analytics solution for collaboration on both production analysis and forecasting

Multiple users can run analyses

← → 🤌 http://localhost/DI 🔎 → 🖒 🌈 Well_DCA_A4sql Fored	CSG Well Monitor A7 × +	C GasLift 50: Fixed Pct × ← → C A Iocalhost/DF6WA/Home#/ Q, ☆ Iocalhost/DF6WA/Home#/ Q, ☆ Iocalhost/DF6WA/Home#/ Q, ☆
DynamicForecaster	♦ Iocalhost/DF6WA/#/DF6WA/AnalysisCase/I ▼ C >> =	
Analysis Simulation Business Networks Reservoirs	DynamicForecaster 📃 🗍	DynamicForecaster
Piping and Wells Chart Groups Data Repository	Analysis Simulation Business Networks Reservoirs	Analysis Simulation Business Networks Reservoirs Piping and Wells Chart Groups Data Repository
Well_DCA_A4sql Forecast X	Piping and Wells Chart Groups Data Repository	GasLift 50: Fixed Pct SQL-SQL X
Actions	CSG Well Monitor A7 X	Actions
Name: Well_DCA_A4sql Forecast		Name: GasLift 50: Fixed Pct SQL-SQL
Case Group:	Name: CSG Well Monitor A7	Case Group: 4 Demo
Last Run: 26/09/2015 15:15:56	Case Group:	Last Run: 26/09/2015 15:26:17
Date Created: 26/09/2015 15:09:58	Last Run: 26/09/2015 15:16:48	Date Created: 26/09/2015 15:09:51
Sensitivities Sorted: No Sensitivities	Date Created: 26/09/2015 15:10:04	Sensitivities Sorted: 🔠 🎟 1 Sensitivity
Start Date: 01/01/2000 00:00:00	Sensitivities Sorted: No Sensitivities	Start Date: 01/12/2015 00:00:00
Finish Date: 19/05/2027 00:00:00	Start Date: 01/01/2010 00:00:00	Finish Date: 01/12/2015 23:59:59
Rows Per Second: 524	Finish Date: 05/01/2013 00:00:00	Rows Per Second: 38
Rows: 240	Rows Per Second: 1504	
Data Source: 🕨 🔲 ShaleGasSupply TG all	Rows: 1097	Rows: 100
Data Store: MellDca4ResultsSql	Data Source: 🕨 🔲 WellInputsSql	Data Source: Data Source: Data Source:
Status: Run	Data Store: MellResultsSql0	Data Store: Data Store: <u>outputWellsToSql</u>
	Status: Run	Status: Run
© 2012-2015 - 1234most Ltd		
© 2012-2013 - 1534HIOSE FED	•	© 2012-2015 - 1234most Ltd

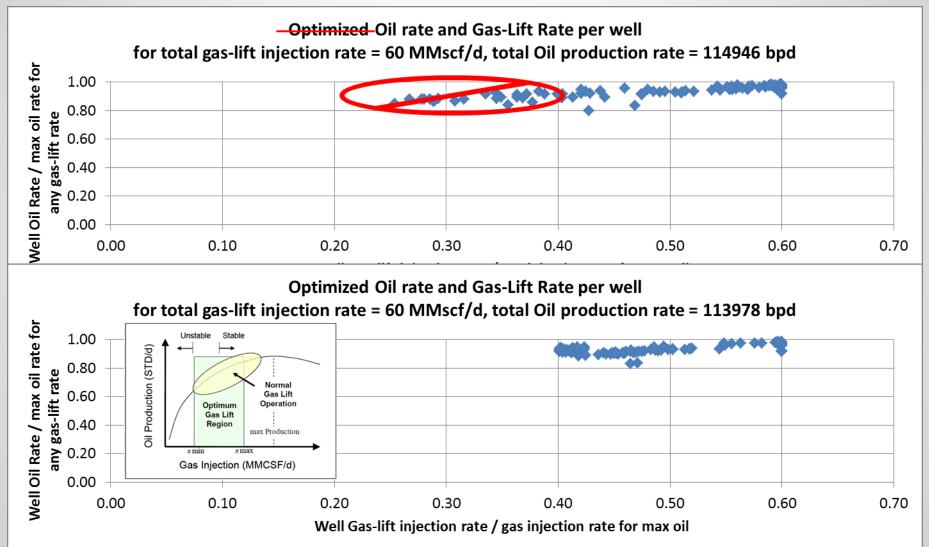

Versatile for analytics & optimized forecasts

Well forecasting	Virtual metering	Optimized scenarios				
Shale Gas wells	Coal Seam Gas wells	gas-lifted Oil system				
Optimal curve-fit of 4 * DCA models and then forecasts each	Computes F.B.H.Pressure and pump performance vs. expected	Computes max. oil from optimized gas-allocation for 100 wells				
4 scenarios * 240 rows	1 scenario * 1100 rows	8 scenarios * 100 rows * 12 m				
2 seconds (SQL-calc-SQL)	1 second (SQL-calc-SQL)	70 seconds (SQL-calc-SQL)				
Case: Well_DCA A4 forecast	CSG Well Monitor A7 Case: test	DynamicForecaster				
DynamicForecaster © 1400 DynamicForecaster						

DynamicForecaster is fast with Excel I/O

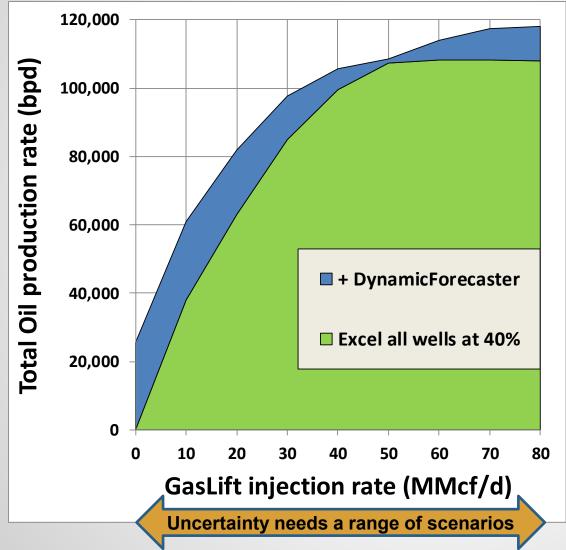
Well forecasting	Virtual metering	Optimized scenarios			
Shale Gas wells	Coal Seam Gas wells	gas-lifted Oil system			
Optimal curve-fit of 4 * DCA models and then forecasts each	Computes F.B.H.Pressure and pump performance vs. expected	Computes max. oil from optimized gas-allocation for 100 wells			
4 scenarios * 240 rows	1 scenario * 1100 rows	8 scenarios * 100 rows * 12 m			
2 seconds (SQL-calc-SQL)	1 second (SQL-calc-SQL)	70 seconds (SQL-calc-SQL)			
6 s 11,000 cells to Excel	2 s 30,000 cells to Excel	6 s 10,000 cells from Excel			
Case: Well_DCA A4 forecast	CSG Well Monitor A7 Case: test	Construction Construction Filter Actual vs Forecast Filter Actual vs Forecast Filter Social Social Social Filter Social Filter Social Social Social Filter Social Filter			

Oil wells: maximise oil production by optimised allocation of gas-lift supply



http://support.sas.com/resources/papers/proceedings11/195-2011.pdf

DynamicForecaster ©


4most

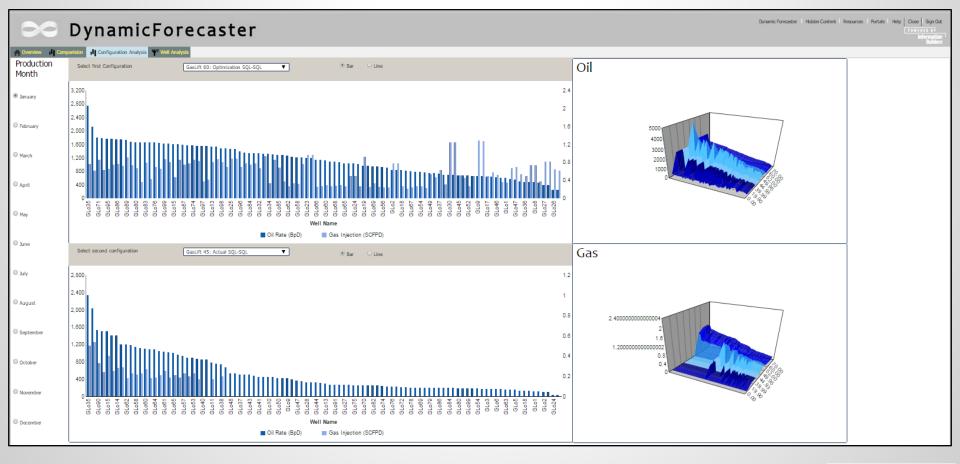
Oil wells: optimised allocation of gas-lift supply

Value-added by gas-lift optimisation

How to allow for future uncertainty in the total gas supply?

DynamicForecaster computes several *optimised* scenarios (at 0, 20, 40, 50, 60, 70 MMscf/d).

Baseline: operators are given the 40% of peak well injection gas rate for every well (perhaps from Excel)


Incremental oil should be valued at the NPV of *accelerated* production

DynamicForecaster ©

DynamicForecaster with WebFOCUS by Information Builders

Web portal for actual production data compared with optimised gas-lift forecasts for 100 wells, 8 scenarios, monthly*12

http://www.informationbuilders.co.uk/products/intelligence

Collaborative analytics & forecasting

Challenges in planning and forecasting

Integrate commercial, production and maintenance

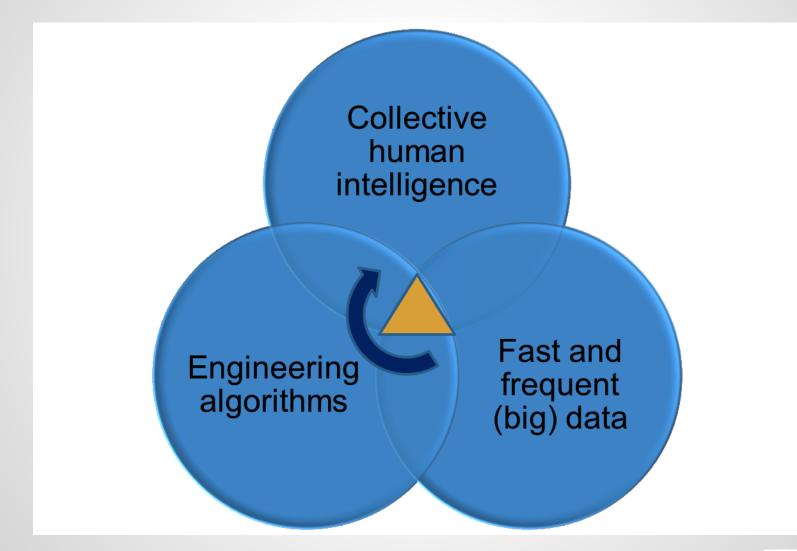
Impact of problems

Don't have a disaster

What is needed to improve forecasting?

Collaboration defends against psychological traps

Design of collaborative analytics & forecasting


Processes and events for continuous improvement

Implementation examples

- Well forecasting, virtual metering, gas-lift optimisation
- High value from optimised forecasts with multiple scenarios

Know sooner, decide better, act faster

http://dynamicforecaster.com/

DynamicForecaster ©

